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Abstract

We introduce a technique for improving
document-level language models (LM) by
leveraging “ancient history”: text that is out-
side the LM’s current context window. We
learn an auxiliary function to select spans from
the ancient history which can help the LM to
predict future text. The selected text spans
are then copied directly into the LM’s context
window, replacing less predictive spans. This
method can improve perplexity of pretrained
LMs with no updates to the LM’s own parame-
ters. We further observe that an auxiliary func-
tion trained in a specific textual domain like
Wikipedia will also work in a substantially dif-
ferent domain such as scientific publications.
With this technique we see a 7% perplexity re-
duction on Wikipedia articles, and a 12% per-
plexity reduction on scientific texts.

1 Introduction

Modern language models (LMs) make use of in-
creasingly long contexts. Architectures which at-
tend to upwards of 3,000 tokens have been pro-
posed, but many current pretrained models use a
context window of 512 or 1,024 tokens. Yet a great
deal of human communication—and thus of LM
applications—consists of long-form text. Scien-
tific, technical, medical, and legal knowledge is
often conveyed via documents tens of thousands of
tokens long. To effectively use such material, LMs
will need to consume long contexts.

In this paper we introduce a simple technique
for improving language modeling of long docu-
ments by effectively extending the LM’s accessible
history beyond the architecture-specified context
window and into the “ancient history”—text which
comes before the beginning of the context window.
We train an auxiliary function to select the parts of
the ancient history that are most predictive of the
future text. The conditioning context of the LM is
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then altered to include these predictive parts of the
ancient history.

An important advantage of this technique is that
it can be used with off-the-shelf pretrained LMs
with no additional tuning of the LM’s parameters.
This quality of our technique is especially relevant
given the trend toward keeping LM parameters se-
cret from both researchers and public, as has been
done with GPT3 (Brown et al., 2020). As the com-
putational and social costs of language modeling
show no signs of abating, it is reasonable to antic-
ipate that future large LMs will also be similarly
inaccessible.

We apply the proposed technique to language
modeling with the popular GPT2 family of models
(Radford et al., 2019). We observe perplexity re-
ductions on both in-domain and cross-domain lan-
guage modeling data across model sizes. We also
find that we can train the ancient history selection
function in one domain and apply it successfully
in another, evidencing for the transferability of the
proposed technique. !

2 Method

A language model defines a probability distribu-
tion over sequences of words w = (wo, ..., wy),
usually factorized as

poa(w) = [[poar(we | woe—1). (1)
t

Due to computational limitations, the condition-
ing context is bounded to (at most) k tokens. Pre-
neural language models fixed k at values like 2
or 4; current research often uses values of 512
or 1,024, sometimes as high as 3,000. The clas-
sical assumption is that the most recent words
are the most useful, i.e., the model should define

!Code available at https://github.com/rikdz/
AHLM
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pLyv (wg | wi—g.¢—1). When modeling longer texts,
and with longer contexts, it is not clear that this
assumption is correct. Our approach aims to con-
dition on both the most recent history as well as
automatically selected content from the arbitrarily
distant past. Further, we do so without modifying
the underlying language model’s parameters.

To do this, we divide the k-word context into two
parts. The first j positions, conventionally filled by
history words at positions ¢t — k through t — k + 7,
will be filled by selected content from anywhere
in the full history, which we will denote s ;. The
remaining k — j positions are unchanged (i.e., filled
by w;_j+j.+—1, which we call the necessary pre-
fix). Figure 1 illustrates the high-level idea. Note
that new selected history content is selected sepa-
rately for each predicted word.?

To apply our approach at inference time, the only
modification to querying an existing LM in the
conventional way is to replace the first j positions
of each word’s history with selected tokens. To
accomplish this, we need a selection function.

Selection Function The selection function looks
into the out-of-context (“‘ancient”) history and se-
lects spans which seem important for understand-
ing the document. A strong selection function will
consider the necessary prefix, w;_.yj.t—1, and se-
lect content from anywhere in the ancient history
Wo.¢—k+j—1 to add to the context in the query to the
LM. In this work, we identify a span size ¢, such
that / < jand j = 0 (mod ¢). We break the
ancient history into overlapping ¢-length spans and
score them with the selection function; only the j /¢
top-scoring spans will be included in the word his-
tory. Future work might consider variable-length
spans, or determine the total amount of selected
content (i.e., j) per document or timestep.

The scoring function is an auxiliary neural net-
work that is trained on text. Its training objective
function is designed to predict the log ratio of the
likelihood of future words given the selected span,
versus the likelihood given only the necessary pre-
fix:

pLm (Wets | Sﬁ;j,’wt—kﬂ;t—l)

In (2)
PLMm (wt:t+s | wt—k+j:t—1)

We therefore train the auxiliary network as a re-

gression model, i.e., minimizing the squared error
between the score it assigns to a candidate span

2For sliding window inference, selected history is popu-
lated only once per window.

and the quantity in Eq. 2. Training examples are
easily constructed from a text corpus; we sample
a collection of span/prefix pairs from the text and
approximate the probabilities in Eq. 2 using a pre-
trained language model (GPT2 large).

Though there are many choices for the selection
function’s architecture, we opt to finetune a pre-
trained language model. We encode the span and
prefix jointly with GPT2 small. We then pass the
last layer of the final token through a two-layer
feedforward network with ReLLU activation that
predicts the score. We note that this design choice
is suboptimal for many applications due to its com-
putational cost. Future work could reduce the time
complexity of our technique by reusing previously
computed representations or modeling the selection
function with a lighter architecture.

Oracles An upper bound for the proposed
method is given by an oracle selection function
which uses the probabilities computed in Eq. 2,
with the actual future words, to select the optimal
history for each w; from among the candidates.
When run on training data, this oracle can be used
to select the two hyperparameters introduced above:
the total length of the selected content j and the
span length ¢.

3 Experiments

We conduct experiments to determine the effect of
incorporating ancient history into the context win-
dows of pretrained LMs. Specifically, we explore
the impact of the selector function on in-domain
and out-of-domain data.

Experimental Setup Our experiments follow
the typical language modeling evaluation setup
with one modification: rather than concatenating all
documents together, we reset the context window
between documents. This means that the begin-
ning of documents will have less context than in
standard language modeling setups. For this rea-
son, our baseline scores are slightly different from
other reported results. We compute average token
perplexity across each dataset. We use a sliding
window of 1024 tokens with a stride of 256 tokens
during inference and repopulate the selected history
each stride.

To determine the hyperparameters j and ¢, we
run a grid search over oracles with parameters j €
{256,768,512,128} x ¢ € {8,16,32,64,128}.
We find j = 512, / = 64 works best with ora-
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Figure 1: Overview of our approach. A traditional LM context window only covers part of the document. Our
method brings the best spans from the ancient history into the context window for improved modeling of future

text.

cles on training data and use these in our model.
For training the selector function, we calculate the
scores from Equation 2 for 728K span/prefix pairs
from the Wikitext-2 training dataset. The model
is optimized with AdamW with a learning rate of
0.00001.

In our experiments, we compare our ancient his-
tory approach to a baseline model that follows the
convention of always using the k£ most recent to-
kens as the history.

3.1 In-Domain Experiment

We first consider the GPT2 large model on
Wikitext-2. We compare a standard context win-
dow (k most recent words) to our ancient history
selection method, where 8 spans of £ = 64 to-
kens are drawn from earlier in the article with our
trained selection function (§2). This result is shown
in the left half of Table 1, line 1. We observe a 0.9
absolute perplexity reduction.

One question that arises is the extent to which
the selection function is essentially learning the
language modeling task. We evaluate an oracle se-
lection function that chooses ancient history spans
that have the highest overlap with the future words.
Despite having access to the text to be predicted,
this approach only outperforms the baseline by 0.1.
We take this as evidence that our selection function
is learning a notion of “useful” ancient history, not
merely to predict the words that will appear in the
future (the language modeling task).

Line 2 of Table 1 shows bigger performance
gain when using ancient history in the off-the-shelf
GPT?2 small language model. As smaller models
are often used where inference latency is important,
future work could investigate selection functions
with lower latency or compute costs.

On Line 3 of Table 1 we see the impact of fine-
tuning. Finetuning to the in-domain data strongly

improves model perplexity compared to the off-the-
shelf GPT2 small model. Yet even the finetuned
model benefits from the use of ancient history con-
texts.

Line 4 shows the perplexity obtained by replac-
ing our selection function with an oracle selection
function (i.e., the one used to select hyperparame-
ter values). We see that our learned function comes
within 0.1 perplexity of this oracle.

3.2 Cross-Domain Experiment

To understand how the model performs over longer
documents and on out-of-domain data, we evaluate
on 1,451 scientific papers from the S20RC corpus
(Lo et al., 2020). Documents in this corpus are on
average twice as long as Wikipedia articles (6K
vs. 3K words), and cover complex scientific topics
in greater detail, a challenge for LMs.

We see similar improvements on the S20RC
subset, shown on the right side of Table 1. The
selection function used here was trained only on
the Wikitext2 training data, indicating that a selec-
tion function trained once may be applied across
domains. It is notable that the differences between
the baselines and proposed technique are larger in
this cross-domain setting. This may be due to the
fact that documents are longer in the science do-
main, so that there is ofte more useful information
in the out of context document history. Addition-
ally, the language used in scientific texts is rather
different from the training data of GPT2. The se-
lection function is less affected than a language
model by such vocabulary mismatches, perhaps
because selecting spans from a document is easier
than choosing from a large, long-tailed vocabulary.

>The GPT models are trained with contiguous text, and so
the non-contiguous selected history is slightly “out of domain.”
We also tried finetuning the LM on oracle selected history
data, but the results were similar to the traditionally finetuned
model.



Example To illustrate how ancient history is
used, we consider the modeling of the 2016 CVPR
paper “Convolutional Two-Stream Network Fu-
sion for Video Action Recognition” (Feichtenhofer
et al., 2016), which appears in the S20RC corpus.
This paper studies fusion strategies in ConvNet
architectures for the task of recognizing human ac-
tions in video. Among the top 20 highest-impact*
terms included by the selection function and absent
from the original context window, we find tempo-
ral, -cite- (a dataset specific replacement for cita-
tion markers), spatiotemporal, training, layers, and
ConvNet. The most frequently selected span from
the ancient history — appearing in 8 context win-
dows —is “... individual frames can be ambiguous,
and motion cues are necessary. Consider, for ex-
ample, discriminating walking from running, yawn-
ing from laughing, or in swimming, crawl from
breast-stroke. The two-stream architecture -cite-
incorporates motion information by training sepa-
rate ConvNets for both appearance ...”. A single
sentence which appears in over half of all selected
histories is “We build upon the the two-stream ar-
chitecture in -cite-", and additional variants of this
sentence are found in other frequently selected win-
dows (such as the above). These spans demonstrate
the summary-like quality of selected history, but
notably do not contain the most informative single
word (temporal). This indicates that the selection
function often chooses content from the ancient
history that will be useful to include with a spe-
cific necessary prefix, rather what might be best for
modeling the document as a whole.

4 Discussion

The main contributions of ancient history language
modeling are twofold. First, we show that—for at
least one popular family of large pretrained LMs—
input contexts do not need to be contiguous spans
of text. These LMs can handle non-contiguous con-
texts with no additional training. This discovery
is related to the trend of “prompt programming”
(Shin et al., 2020; Sun and Lai, 2020; Li and Liang,
2021) that has emerged around large, inaccessible
models like GPT3 (Brown et al., 2020). Increas-
ingly, access to such models will be via APIs, with
model parameters themselves hidden from client
processes. Prompt programming seeks to discover
those inputs which can effectively guide the LM

“Impact is measured by perplexity difference observed
when using selected versus original context.

to produce the desired output. The selected history
format employed in our work can be viewed as a
successful input prompt format for document-level
language modeling.

Secondly, we show that changes in probability
in a given model can be used as a reward for an
auxiliary model to optimize. It is not obvious that
such perplexity improvement as we observe with
our oracle score function would be achievable even
within a given textual domain, let alone across do-
mains. Our work shows that these improvements
do generalize. Can other tasks benefit from training
to optimize this reward?

5 Related Work

Prior work has shown the value of extending the
context window size for improved language mod-
eling (Baevski and Auli, 2019). Sukhbaatar et al.
(2019) and Beltagy et al. (2020) propose modi-
fied attention mechanisms for increasing the ef-
fective capacity of the model. Alternately, Press
et al. (2020) show that staged training and position-
infused attention allow language models with
shorter context windows to outperform those with
longer context windows. Cognizant of the expense
of training and retraining modern large language
models, the current work explores alternative ways
of using whatever context window is afforded by a
pre-existing model.

Our work is also related to techniques for
caching and replaying past experiences. Khandel-
wal et al. (2020) retain a datastore of vector repre-
sentation of training instances. At inference, they
query the datastore using the current model state
to retrieve a collection of next-token experiences.
They interpolate these experiences with the current
model’s distribution to improve model perplexity.
Yogatama et al. (2021) extend this approach with
a more sophisticated fusion mechanism. Our tech-
nique learns a different scoring function from these,
one based on the observed performance gain of
reusing a past experience. Additionally, we bring
the various parts of the document history into the
pretrained language model’s context window, en-
abling long-distance synthesis of information.

Similar to our work, Dai et al. (2019) offer a
technique for extending the context window of
LMs farther into the document history. There, a
recurrence mechanism is used to allow information
from the previous segment of the document to influ-
ence the representation of the next. In our method,



Wikitext-2 val. ppl. ({)

S20RC val. ppl. ({)

model original overlap oracle AHLM ‘ original AHLM
1. GPT2 Large 16.56 16.43 15.64 ‘ 14.12 12.62
2. GPT2 Small 26.45 25.93  24.82 21.01 18.42
3. (with finetuning) 19.47 18.68
4.  (oracle score) 24.74

Table 1: Perplexity results for ancient history language models (AHLM).

segments from anywhere in the document history
can be brought into the context window. Addition-
ally, our technique can piece together disjoint spans
from the document history for better coverage.

Related inference techniques include Krause
et al. (2018), who develop a dynamic evaluation
method for adapting model parameters to local con-
text. Our method also improves performance at
inference, but requires no modification of LM pa-
rameters. As language models grow to hundreds of
billions of parameters, we believe our use of train-
ing a smaller auxiliary selection function is more
sustainable than even shallow retraining.

Our work fits with recent research into avoid-
ing expensive retraining for large language models.
Joshi et al. (2020) inject textual knowledge into a
language model’s context window to improve ques-
tion answering. Their method uses an entity linker
to include additional information about named en-
tities found in the passage. Our work learns a se-
lection function from data, and is applicable to
passages without named entities.

Shin et al. (2020) use gradient-guided search to
find a collection of keywords to append to an input
instance which will improve classification accuracy
for that instance. Our work deals explicitly with
document-level modeling, where context is often
too long to apply gradient-based methods. Li and
Liang (2021) learn a small space of continuous
vectors which are prepended to language model
context in a table-to-text task. Our technique is
complementary to theirs; while learning continuous
vectors may also improve our task, the discrete
method we propose has the additional advantage of
providing interpretable (i.e., textual) explanations
for model decisions.

6 Conclusion

We propose a new technique for extending the con-
text available to language models by learning to se-
lect useful spans from the out-of-context document

history. Empirical results across model sizes, train-
ing regiments, and datasets demonstrate the wide
applicability of the proposed method. Importantly,
our selection function can improve perplexity with
minimal additional training and no modification
to the (possibly large) language model parameters
themselves. This function can be trained in one do-
main and applied in others at inference with good
results. Future work can explore the time and space
efficiency of the proposed technique, or explore
methods for selecting out of document contexts.
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