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Abstract

Current end-to-end neural conversation mod-
els inherently lack the flexibility to impose se-
mantic control in the response generation pro-
cess. This control is essential to ensure that
users’ semantic intents are satisfied and to im-
pose a degree of specificity on generated out-
puts. Attempts to boost informativeness alone
come at the expense of factual accuracy, as at-
tested by GPT-2’s propensity to “hallucinate”
facts. While this may be mitigated by access to
background knowledge, there is scant guaran-
tee of relevance and informativeness in gener-
ated responses. We propose a framework that
we call controllable grounded response genera-
tion (CGRG), in which lexical control phrases
are either provided by an user or automatically
extracted by a content planner from dialogue
context and grounding knowledge. Quantita-
tive and qualitative results show that, using this
framework, a GPT-2 based model trained on
a conversation-like Reddit dataset outperforms
strong generation baselines.

1 Introduction

End-to-end neural models for open-domain re-
sponse generation (Shang et al., 2015; Sordoni
et al., 2015; Vinyals and Le, 2015; Gao et al.,
2019a) are capable of generating conversational
responses that are both fluent and contextually ap-
propriate. Although the earliest neural generation
models were characterized by bland and evasive
responses (Li et al., 2016a), surprisingly human-
like conversations can be generated using recent
diversity-enhancing strategies (Holtzman et al.,
2020; Gao et al., 2019b) and massive GPT-2 style
models (Radford et al., 2019; Zhang et al., 2020).1

1For a related task (document creation), 72% of hu-
man judges found GPT-2 credible vs. 83% for New
York Times articles: https://openai.com/blog/
gpt-2-6-month-follow-up/

A: You should check out the movie La La Land .

B: Tell me more about it.

 Damien 
Chazelle

…  musical film directed 
by Damien Chazelle 
and it stars Ryan 
Gosling as a jazz 
pianist ...

La La Land is a 2016 American romantic comedy-drama 
musical film written and directed by Damien Chazelle. It 
stars Ryan Gosling as a jazz pianist and Emma Stone as 
an aspiring actress, who meet and fall in love while 
pursuing their dreams in Los Angeles. Having been fond 
of musicals during his time as a drummer, Chazelle first 
conceptualized the film alongside Justin Hurwitz while 
attending Harvard University together. Moving to Los 
Angeles in 2010, Chazelle wrote the screenplay but did 
not find a studio willing to finance the production without 
changes to his design. Following the success of his 2014 
film Whiplash, the project was picked up by Summit 
Entertainment. Filming took place in Los Angeles from 
August to September 2015, with the film's score 
composed by Hurwitz and the dance choreography by 
Mandy Moore. La La Land premiered at the 
73rd………………….

A: I’m not sure … 
Might be a 
superhero movie...

A: It is a 2016 movie 
...

A: It … stars 
Damien Chazelle.

A: It is a musical 
film directed by 
Damien Chazelle 
and Ryan Gosling is 
also in it!

I: No grounding, No control II: Grounding only 

III: Control only IV: Both Grounding 
and Control 

Figure 1: Generated responses tend to be generic
or factually incorrect without grounding or control.
Adding grounding improves information reliability but
may lead to vague responses. Adding control boosts
response specificity while it is hard to contextualize
phrases without grounding. Adding both control and
grounding leads to contentful and reliable responses.

While blandness may no longer present a challenge,
the downside has been a propensity towards “hallu-
cinated” or “fake” output (Zellers et al., 2019) of
the kind illustrated in scenario I in Figure 1.

Grounded response generation (Ghazvininejad
et al., 2018; Dinan et al., 2019; Qin et al., 2019)
approaches can inhibit hallucination of facts. Yet
grounding alone (e.g, the Wikipedia page about La
La Land in scenario II of Figure 1) without control
and semantic targeting may induce output that is
accurate but vague or irrelevant. Controllable text
generation (Hokamp and Liu, 2017; Keskar et al.,
2019; Tang et al., 2019; See et al., 2019), on the
other hand, provides a level of semantic control
that can guide the decoder towards relevant out-
put, but in the absence of grounding the model is
prevented from associating control phrases with
correct facts. We posit that both grounding knowl-
edge and lexical control are essential to generating
reliable information. We therefore introduce a gen-
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Damien    

A: You should check out 
the movie La La Land .

B: Tell me more 
about it.

A is typing ...

It is a musical film directed by 
Damien Chazelle and Ryan 
Gosling is also in it!

A drummer, Damien Chazelle 
wrote the screenplay for the 
movie in 2010.

La La Land was praised for 
Damien Chazelle’s screenplay 
and direction.

Figure 2: The machine acts as a response editorial as-
sistant that suggests candidate responses for the user A
according to the conversation history, the user’s partial
input (Damien) and grounding knowledge.

eration framework called controllable grounded
response generation that incorporates both compo-
nents. Lexical controls not only enforce response
specificity, but filter lengthy, irrelevant or incoher-
ent groundings.

Lexical control of conversational text generation
has application in editorial assistants that help a
person write a document, an email or message. Fig-
ure 2 depicts a person typing keywords to indicate
their semantic intent, while the machine helps con-
struct the response to be sent out.

This work makes the following contributions:
(1) We propose a novel framework called control-
lable grounded response generation (CGRG) that
generates a response from the dialogue context,
lexical control phrases and groundings. To the
best of our knowledge, this is the first work to in-
tegrate both control and grounding into response
generation, and explore how they can be mutually
beneficial. (2) We adapt the state-of-the-art gen-
eration model GPT-2 to this problem setting, and
improve results by adding inductive attention to
GPT-2. (3) We show through qualitative and quan-
titative evaluations that CGRG outperforms strong
baselines where a) the control phrases are provided
by a (simulated) user and b) automatically extracted
by a content planner.

2 Controllable Models of Grounded
Response Generation

We formalize the problem as follows: given
dialogue context X , p lexical control phrases
C = (C1,⋯, Cp) and q sentences of ground-

ing G = (G1,⋯, Gq), generate a response
R = (r1,⋯, rm) that contains semantic infor-
mation guided by C. Control phrases can be
either directly provided by a user or automatically
derived from a content planner. To differentiate
derived control phrases from gold or user-provided
C, we denote these as C̃.

This new framework, called Controllable
Grounded Response Generation (CGRG), assumes
we have grounded conversational dataset, such as
in (Qin et al., 2019). We assume that each data
instance consists of a dialogue context, grounding
knowledge and a reference response. To analyze
this framework, we define a control mechanism
that defines one or more control phrases for each
instance. For more focus on grounding, our user
controls are lexical phrases that are relevant to both
target response and some part of grounding knowl-
edge. Since it is costly and unscalable to have hu-
mans annotate the control phrases, we use lexical
matching, defining control phrases to be informa-
tive n-grams that appear in both grounding and the
reference response. Details of our dataset and its
processing are presented in Section 3.

2.1 Extensions to GPT-2

GPT-2 is a transformer-based language model
trained on large scale web data (Radford et al.,
2019) and uses self-attention where each token at-
tends to its left tokens. It is trained with the objec-
tive: predict the next word, given all of the previous
words within a defined context window.

To apply GPT-2 within CGRG, we concatenate
X , C (or C̃) and GC to be our input sequence,
as shown in Figure 3 (left). Then we have the
model predict the next response word given the
concatenated input sequence (denoted as S) and the
previous response tokens in R. GC is the subset of
G that is relevant to C. For example, in this work,
we denote the grounding sentences that contain
any phrase in C as GC . To differentiate the input
elements, we insert an end-of-text token ⟨eos⟩ at
the end of each dialogue utterance in X , a ⟨c⟩ token
at the end of each control phrase in C and a ⟨s⟩
token at the end of each sentence in GC .

We first concatenate the input sequence S and
the response sequence R into a long text. We de-
note the source sequence as S = (w1,⋯, wn),
which is used to generate target sentence R. The
conditional probability of P (R∣S) can be written
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r2 r3 <eos>
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GPT-2

R

Response

X G1 ... C1 ... CpGq

FULLY CONNECTED ATTENTION

C2G2

Trm Trm Trm Trm Trm Trm

Trm Trm Trm Trm Trm Trm

r2 r3 <eos>

...... ... ...... ...

...

... ...

...

...

GPT-2 with Inductive Attention

R

Response

G1 ... C1 ...C3Gq C2G2

: phrase/sent-level attention
: token-level attention 

...

SPARSELY CONNECTED (CONSTRAINT-DRIVEN) ATTENTION

w2 wnw1 r2 rmr1... ... w2 wnw1 r2 rmr1... ...

Figure 3: GPT-2 considers all possible forward attentions, which can overwhelm the model when the context
contains context (X), grounding (G), and constraints (C). On the other hand, Inductive Attention helps focusing
on attentions that are relevant to the constraints. Dashed arrows indicate which token-level attentions are preserved.
Sparsely connected attention is implemented with a mask on all hidden layers.

as the product of conditional probabilities:

p(R∣S) =
m+1

∏
k=1

p(rk∣w1,⋯, wn, r1,⋯, rk−1)

where rm+1 is the additional end-of-text token in-
dicative of the end of generation.

2.2 GPT-2 with Inductive Attention
GPT-2 by default takes a consecutive text sequence
as its input in order to train a language model. In
our problem setting, we have each input element
of X , C, GC in a segmented format. Simply con-
catenating all these input elements into a GPT-2
model can induce noise, as some segments may
not necessarily be strongly relevant, and we con-
sider attention links between such segments to be
uninformative.

We remove potentially uninformative attention
links for each data example by injecting pre-
established structural information between C and
GC . For example, in Figure 3 (right), say that C
consists of C1, C2, C3, and GC consists of G1 and
G2. If we know C1 is only found in G1, then we
only want to keep the attention link between C1

and G1, and not between C1 and any of the other
grounded sentences. Since we think GC is a set
of segmented sentences from G, we remove all
cross-sentence links within GC tokens. Similarly,
we remove all links between non-identical phrases.
Thus, the attention links for each data example are
pre-determined by structural information between
C and GC . To implement this, in each transformer
layer, we apply attention masks where the removed
attention links and links to future tokens have value
0 and the others have value 1. We refer to this pre-
calculated attention as inductive attention. Each

response token still attends to all input tokens and
other response tokens on its left.

We denote the start and end positions of a control
phrase Ci ∈ C in S to be c

s
i and c

e
i and those of a

grounding sentence Gi ∈ GC to be gsi and gei . Then
we calculate the attention mask M as follows:

Mi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i < j

0 if i ∈ [csk, cek], j ∈ [csl , cel ], k ≠ l

0 if i ∈ [gsk, gek], j ∈ [gsl , gel ], k ≠ l

0 if i ∈ [csk, cek], j ∈ [gsl , gel ], Ck /∈ Gl

1 otherwise

Then for each transformer head, we have the
stacked matrices Q, K and V to represent each
example sequence (concatenated S and T ) as in
(Vaswani et al., 2017). We calculate the attention
as follows (d is the model dimension):

Attention(Q,K, V ) = softmax(M ◦QK
T

√
d

)V

2.3 Content Planner
We experiment with two content planners in order
to assess the effectiveness of our models when gold
constraints are not provided by users. The first
is a simple retrieval-based pipeline: for each test
dialogue context, we (i) Rank the sentences in G by
IDF-weighted word overlaps with X; (ii) Extract
statistical phrases from the top 50 sentences; (iii)
Obtain the 2 statistical phrases that appear most
frequently in the 50 sentences as C̃. In order to
reduce search space, we use noun phrases only. As
there is no need to train such extraction pipeline, it
is only applied during inference stage.

We also experiment with BERT QA as a content
planner. We fine-tune a BERT QA model on our



training examples, with X as the query, G as the
document and C as answers. Then we use the fine-
tuned model to predict answers on test examples.
We obtain the top 2 answers as predicted control
phrases C̃ and drop the second if the string overlaps
with the first.

3 Dataset

We use the grounded Reddit conversation dataset
described in Qin et al. (2019), which features
Reddit conversations about web pages such as
news stories and Wikipedia articles, and covers
diverse topics (178 subreddit topics ranging from
news/technology to literature/music) and writing
styles. As a social media aggregator, Reddit is akin
to multiple datasets. In order to make this dataset
support controllable text generation, we apply the
following pipeline to extract control phrases: we
match each n-gram (n ≤ 5) in the reference re-
sponse to each grounding sentence. In order to
ensure certain informativeness of control phrases,
we set an IDF threshold (8.5) for unigrams. When
two n-grams are identical except for an added func-
tion word or punctuation, we use only the shorter
version. In addition, we remove the matched n-
grams that appear in dialogue context as we argue
that new words are more informative. For each data
instance, we have the remaining matched n-gram(s)
as control phrases.

We use crowdsourced workers to annotate
whether the extracted control phrases are central to
the reference response, given the dialogue context.
For each response, we had 3 judges to enter on a
1-6 scale and calculate the average score. In 2000
annotated examples, the median score was 4.33 and
67.4% of examples had a score over 4. Inter-rater
agreement was “fair” with Krippendorff’s alpha
coefficient at 0.32. We keep only examples where
at least one matched phrase can be found. Such
strict lexical matching between target response and
grounding assures that the kept examples have a
high ratio of grounding utilization, which fits one
focus of this work: leveraging grounding in re-
sponse generation. After the processing, we reduce
the number of utterances of train, dev and test from
2.36M, 0.12M and 0.34M to 390K, 6.7K and 21K
respectively. And the average length of all refer-
ence responses increases from approximately 18.5
to 26.5. The average numbers of phrases in C for
train, dev and test set are 1.32, 1.27 and 1.38 re-
spectively. The average numbers of sentences in

GC for train, dev and test set are 4.37, 4.32 and
4.25 respectively. And we use up to 3 dialogue
turns in experiments.

4 Experimental Setup

4.1 Training and Inference Setup

In our GPT-2 baseline and Inductive Attention
(GPT2IA) models, we have both type and posi-
tional embedding for each input token. We treat
X , each sentence in GC , each phrase in C and
response R as separate segments. We set the max-
imum number of sentences in GC to be 20 and
maximum number of phrases in C to be 10, then
we have “0” for X; “1-20” for GC ; “21-30” for
C and “31” for R tokens as type embedding. For
each segment, we have the position embedding for
each token as its position in that segment.

We use the small version of GPT-2 with 117M
parameters, with the maximum length of the in-
put or target response sequence to be 512. We
use BPE tokenization, following GPT-2. We train
our model and all other GPT-2-based baselines on
top of DialoGPT (Zhang et al., 2020), which is a
conversational response generation model trained
on 147M Reddit comment chains on the basis of
GPT-2. None of their Reddit training or validation
examples overlap with our test examples. We use
batch size 32. Learning rate and warmup steps are
tuned on valid set.

We use greedy search as the decoding strategy
for all GPT-2 and GPT2IA setups, except for a
single experiment setting where grid beam search
(GBS) (Hokamp and Liu, 2017) is applied for com-
parison with lexical constrained decoding. The
goal of the comparison of our methods with GBS
is to investigate whether it helps to encode the con-
straints into the hidden state during both training
and inference, as GBS uses lexical constraints only
during inference.

4.2 Evaluated Systems

We conduct experiments to draw insights from com-
parison of different response generation models and
input settings. We evaluate our models according
to the following settings:
X: This is the standard setting for non-controllable
response generation, where only the dialogue con-
text is given. We conduct experiments for the state-
of-the-art generation model GPT-2.
X+G: This is the standard setting for grounded re-
sponse generation. We compare two models: CMR



(Qin et al., 2019) and GPT-2. CMR is the state-of-
the-art grounded response generation model that
combines a MRC model and a LSTM decoder.
GPT-2 for this setting concatenates X and G as
its input. Note that as both models have input se-
quence length limit, only a randomly chosen subset
of grounding sentences are fed into each model.
X+C: This is the controllable response genera-
tion setting without grounding. We conduct experi-
ments for GPT-2 by concatenating X and C.
X+GC: This setting measures how the grounding
only relevant to C can help with response genera-
tion, without explicitly providing C. We conduct
experiments for GPT-2, by concatenating X and
GC to be the input.
X+C+GC: This setting measures how grounded
control can help with response generation. We
conduct experiments for GPT-2 and GPT2IA, by
concatenating X , GC and C to be the input.
X+C+G: This setting is for comparison against
existing constrained generation methods like grid
beam search (GBS) introduced in Hokamp and Liu
(2017), where lexical control phrases are added
in decoding only without involving training. We
conduct experiments for GPT-2 where X and G
are the only encoded inputs and C is only applied
in decoding with GBS.

To provide more insight into experiment scores,
we also evaluate human responses as a ‘system’.
This is possible because we are using multi-
reference test set (Qin et al., 2019) with 3.3k unique
test dialogue contexts. For each test dialogue con-
text, we retain up to 6 references and set aside one
of these for evaluation, so the “human response”
can be evaluated against the remaining references
for automatic evaluation. To ensure comparability,
all systems are evaluated against the same 5 refer-
ences. For each evaluation metric, we report the
highest score among the 5 references.

4.3 Automatic Evaluation

We experiment with both user-controllable and au-
tomatic response generation, with gold and pre-
dicted control phrases from a content planner re-
spectively. As different reference responses incor-
porate different gold control phrases, we use single-
reference evaluation for the user-controllable set-
ting. Predicted control phrases are independent of
reference responses, so we can use multi-reference
evaluation in the automatic generation setting.

For automatic evaluation, we measure the overall

relevance of the generated responses with metrics
including BLEU-4 (Papineni et al., 2002) and NIST-
4 (Doddington, 2002). NIST is a variant of BLEU
that weights n-gram matches by their information
gain, which penalizes uninformative n-grams. We
measure the diversity of n-grams in generated re-
sponses with the ratio between the number of dis-
tinct n-grams and the total number of n-grams. Pre-
vious works (Li et al., 2016b; Simeng Sun, 2019)
has shown that automatic metrics for generation
can sometimes be unreliable, and response genera-
tion generally achieves low absolute metric scores.
Accordingly our main conclusions are based on
human evaluations (Section 4.4). Nevertheless, we
find that our automatic evaluation results comport
well with our human evaluations.

In order to provide a sense of how control
phrases help enforce the specificity level for gen-
eration, in the user-controllable setting, we report
control phrase inclusion rate, namely the percent-
age of gold control phrases included in the gen-
erated responses. However, lower inclusion rate
does not necessarily indicate worse performance in
satisfying the user’s control request, as we treat the
lexical control phrases as soft semantic guidance
in generation, rather than as hard constraints.

4.4 Human Evaluation

Human evaluation was conducted using crowd-
sourced workers. Relevance and appropriateness
to the preceding dialog and consistency with the
background text (as a metric of factual correctness)
were measured. Judges were presented with paired
randomized outputs from each system. Document
title, a short snippet of the document and up to
two conversational turns were provided as context.
Judgments were entered on a five-point Likert scale,
and ties were permitted. Three to four judges eval-
uated each pair and metrics were imposed to block
poorly performing judges. Inter-rater agreement,
was “fair” with Krippendorff’s alpha coefficient at
0.32.2

5 Results and Analysis

5.1 Controllable Response Generation

We focus here on analyzing the user-controllable
grounded response generation framework, using

2Sample sizes vary. The number was reduced from an
initial 1,000 when we automatically removed a number of
instances where egregiously offensive content rendered them
inappropriate to display to judges.



Setting Model NIST BLEU Div-2 Avg-L Incl.
1) X GPT-2 0.90 0.55% 4.9% 22.2 –
2) X+G CMR 0.34 0.17% 11.3% 15.1 –
3) X+G GPT-2 0.98 0.67% 7.5% 23.1 –
4) X+C GPT-2 1.67 2.65% 10.7% 28.7 69.4%
5) X+GC GPT-2 1.34 1.58% 11.1% 26.6 34.8%
6) X+C+G GPT-2+GBS3 1.60 2.38% 10.6% 26.8 98.0%
7) X+C+GC GPT-2 1.77 3.22% 11.3% 27.0 65.1%
8) X+C+GC GPT2IA 1.80 3.26% 11.6% 25.9 63.5%

Table 1: Controllable Response Generation auto-
matic evaluation (with user constraints).

single-reference evaluation. In Table 1, lines 1-3
are not controllable settings and do not have con-
trol phrases as input, while lines 4-8 have control
phrases as input, either explicitly or implicitly. The
huge performance gap between lines (1-3) and (4-
8) demonstrates the value of adding control.

More importantly, we can draw the follow-
ing conclusions by comparing rows in Table 1:
(i) 1 vs. 3: Simply adding groundings to the model
input improves the performance to a limited ex-
tent; (ii) 2 vs. 3: GPT-2 in general performs better
than the state-of-the-art grounded model CMR, in-
dicating that the combination of pre-training and
having a transformer-based decoder helps improve
generation; (iii) 4 vs. 7-8: providing constraint-
sensitive grounding boosts performance compared
to having all the grounding (iv) 5 vs. 7-8: provid-
ing control phrases in an explicit way is impor-
tant; (v) 6 vs. 7-8: applying control in hidden states
helps the model generate better quality responses
than applying control at decoding only; (vi) 7 vs. 8:
inductive attention helps reduce noise and improve
the performance of GPT-2.

Although the comparison between line 6 vs. 7-8
shows that applying control in hidden states is more
effective than strict constraints at decoding, it is
possible that controls at the training and decoding
stages could be complementary. We leave inves-
tigation of methods of combining these for future
research.

Human evaluation results in Table 2 show
X+C+GC+GPT2IA outperforms other systems,
except in the case of Consistency, where there is no
statistical difference between X+C+GC+GPT2IA
and X+C+GC+GPT2, both grounded systems.

5.2 Content-Planned Response Generation
In a fully automatic conversation scenario, we
propose to have a content planner predict control

3
X+C+G (GBS) only takes X+G as the encoder input

while C is seen at decoding only.

GPT2IA Tied GPT-2

Relevance: Which response is more relevant
and appropriate to the preceding dialog?

X+C+GC 69.8% 14.1% 16.1% X+C+G+GBS
X+C+GC 42.1% 23.5% 34.4% X+C
X+C+GC 38.1% 28.6% 33.3% X+C+GC

Consistency: Which response is more
consistent with the grounding text?

X+C+GC 28.1% 44.3% 27.6% X+C+GC

X+C+GC 37.6% 31.4% 31.0% X+C

Table 2: Controllable Response Generation human
evaluation for relevance and background consistency,
showing preferences (%). A number in bold indicates
the system is significantly better at p ≤ 10

−5 computed
using 10k bootstrap replications.

Setting Model Content Planner NIST BLEU Div-2
X GPT-2 - 1.42 1.31% 18.1%
X+GC̃ GPT-2 Retrieval-based 1.61 1.26% 19.4%
X+C̃+GC̃ GPT2IA Retrieval-based 1.67 1.23% 20.2%
X+C̃+GC̃ GPT2IA BertQA 1.67 1.26% 19.6%
Human - - 2.04 2.56% 62.8%

Table 3: Response Generation automatic evaluation
(multi-references) using constraints from content plan-
ner. Note that results of Tables 1 and 3, as user con-
straints give away significant information about the in-
tended response.

phrases in order to leverage our proposed frame-
work for automatic response generation. Table 3
compares settings where no control phrases and
predicted control phrases (C̃) are provided to the
model. We observe that both the retrieval-based
or BERT QA based content planner achieve good
results in terms of NIST and Div-2. (These are the
methods presented previously in Section 2.3.) We
also provide the evaluation results on the carved
out human response in Table 3, which indicates the
upper bounds for this task. As described in Sec-
tion 4.3, we conduct multi-reference evaluation for
the predicted control phrases setting.

As an intermediate assessment of the content
planner, we report the Precision, Recall and F1 of
tokens in C̃ and GC̃ , with respect to reference re-
sponses (counts for stop-words and punctuation

Content Planner C-P C-R C-F G-P G-R G-F
Retrieval-based 13.8% 5.6% 7.2% 5.5% 21.8% 7.7%
BertQA 14.7% 4.8% 6.5% 5.0% 21.3% 7.1%
Human 24.4% 6.1% 8.6% 6.6% 17.2% 8.0%

Table 4: Response coverage of control phrase C̃ and
associated grounding GC̃ tokens.



Dialogue
Context

With “nihonium”, Japanese scientists become first from an Asian country to name atomic
element.

Control periodic table
Grounding ... The periodic table is a great legacy in chemistry ...
X+C+GC

+GPT2IA
I’m not sure if this is a good thing or not, but I’m pretty sure the periodic table is a great legacy
in chemistry.

Control artificially
Grounding ... The artificially synthesized element has 113 protons in its nucleus ...
X+C+GC

+GPT2IA
I wonder if they will be able to name a chemical that artificially produces atomic elements.

Table 5: For the same dialogue context, GPT2IA generates varied responses given different control phrases.

tokens are removed) in Table 4. For each test dia-
logue context, we calculate the values for the refer-
ence response that gives the highest F1 score and
report the average among all test examples for each
metric. We notice that the retrieved-based content
planner predicts slightly better quality phrases than
BERT QA, while still worse than the gold control
phrases from the carved out human response.

5.3 Qualitative Analysis

To understand how grounding knowledge assists
generation, we plot the token-level probability (Fig-
ure 4) for both X+C and X+C+GC systems. We
intentionally select an example about an uncom-
mon entity to eliminate the possibility that the
knowledge is captured in pre-training. This fig-
ure shows the token-level probability of a potential
response, given the dialogue context Do you know
the education background of the new faculty, Sam?,
control phrases University of Toronto and neural
networks, and grounding sentences Sam got his
bachelor degree in Physics at University of Sci-
ence and Technology of China. He spent 6 months
at University of Tokyo in Japan as a visiting stu-
dent, when he was a master student in Computer
Science at University of Hong Kong from 2010-
2012. And he finished his PhD at University of
Toronto in Canada with his research focused on in-
terpretability of neural networks on text generation
in 2017. The grounded model assigns higher proba-
bilities to contextual words from grounding such as
graduated and thesis as well as to factually correct
entity tokens like 2017. It assigns lower probabil-
ity to factually incorrect tokens such as economics.
These facts suggest that grounding knowledge can
potentially help controllable generation: (i) contex-
tualize control phrases; (ii) distinguish correct and
incorrect facts.

Figure 5 illustrates another example to analyze
the functions of control and grounding for genera-
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Figure 4: Sample showing our grounded model
(X+C+GC+GPT2IA) offers better discrimination
against an ungrounded model (X+C+GPT2), given a
document about a person’s education background (con-
straint: University of Toronto; neural networks).

tion. We list top 6 tokens after a partial response
given the same dialogue context and grounding,
and control phrase Canada. The ungrounded and
non-controllable model gives equally distributed
probabilities to commonly known American state
names after University of. Adding grounding helps
the model rank locations based on the background
knowledge. Further adding controls helps the
model locate the correct or intended answer.

In order to quantify the observations in Fig-
ure 4 and Figure 5, we sample 100 test exam-
ples and randomly pick an entity from each ref-
erence response to calculate the entity’s probabil-
ity from each model. We restrict the entity to be
not in control phrases. Then we calculate the av-
erage probability ratio for X+C/X+C+GC and
X+G/X+C+GC , to be 0.773 and 0.886 respec-
tively. Both of them are smaller than 1.0, which in-
dicates having both grounding and control phrases
gives higher probability to correct entities than hav-
ing grounding or control phrases alone.

Explicit control phrases can be leveraged to dis-
sect the generation process. Table 5 shows how
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Figure 5: The top 5 tokens (plus Canada) to generated
after the partial response Sam just graduated from Uni-
versity of. While the ungrounded model makes mostly
generic predictions, the grounded model provides more
topically relevant ones and the constraint further posi-
tively influences the hidden state.

controls may guide or perturb the GPT2IA model to
produce responses with diverging semantics. And
we provide more sample outputs of different sys-
tems in Table 6.

6 Related Work

6.1 Grounded Response Generation
Although some relevant work draws on external
knowledge sources, none incorporates user control.
Ghazvininejad et al. (2018) develop a memory net-
work based model that leverages grounding infor-
mation from Foursquare tips. Moghe et al. (2018),
while Zhou et al. (2018) collect movie discussion
datasets via crowdsourcing. These are limited to
specific domains. Dinan et al. (2019) crowdsource
conversations where each utterance is grounded
in up to one single selected Wikipedia sentence.
We focus on a more realistic, scalable setting, in
which a response may constitute a blend of multiple
grounding information pieces, rather than a single
factual sentence rephrasing. Other researchers pro-
pose a copy mechanism to import tokens from both
dialogue context and grounding (Yavuz et al., 2018)
or leverage a reading comprehension model to co-
encode dialogue context and grounding knowledge
(Qin et al., 2019).

Other work incorporates relational knowledge
bases (Zhu et al., 2017; Liu et al., 2018) or com-
monsense knowledge graphs (Young et al., 2018)
to conversational models. More recently, Liu
et al. (2019) develop a graph-path-based method
on knowledge graphs augmented with unstructured

grounding. Our present work focuses on text based
grounding knowledge and does not require precon-
structed knowledge graphs.

6.2 Controlled Generation

Prior work on machine translation and language
generation has sought enforce user-specified con-
straints, primarily in the form of lexical constraints
(Hokamp and Liu, 2017; Hu et al., 2019b,a; Miao
et al., 2019). These approaches exploit constraints
at inference time only; in our case, constraints are
applied during training, with the option of also be-
ing applied at inference. Application during train-
ing enables the constraints to be incorporated into
the latent space for better predictions.

Other related work (See et al., 2019; Keskar
et al., 2019; Tang et al., 2019) have explored
non-lexical constraints, but do not examine how
these could facilitate use of grounding and exter-
nal knowledge. We see this line of research as
complementary to ours.4

Controllable text generation has also been em-
ployed in text style transfer (Hu et al., 2017) and
other tasks (Ficler and Goldberg, 2017; Dong et al.,
2017; Gao et al., 2019c), to disentangle high-level
style information from contextual information such
that the style information can be independently
manipulated. (Zhao et al., 2018) uses discrete la-
tent actions to learn an interpretable representation
for task-oriented dialogue systems. While these
works use “style” labels (e.g. positive/negative, for-
mal/informal) as controlling signal, our framework
controls generation with specific lexical constraints,
allowing for fine-grained semantic control.

7 Conclusion

The CGRG framework allows users to inject soft
semantic control into the generation process. It
incorporates grounding to contextualize users’ se-
mantic intents as well as to boost information reli-
ability. We introduce an inductive attention mech-
anism for self-attention-based generation models
like GPT-2 in order to boost its performance. We
also demonstrate that this framework can benefit
standard automatic response generation when in-
tegrated with a content planner. Some interesting

4These papers also make the assumption that (gold) con-
straints can always given to the system, which limits the po-
tential to demonstrate broader benefits of the approaches. To
address this concern, we also evaluate our models in settings
where gold constraints are unavailable (e.g., based on pre-
dicted constraints produced by a content planner).



Dialogue
Context

More cops have died of illness linked to 9/11 than had perished in it on that day.

Control people died; elevators
Grounding ... 1,402 people died at or above the floors of impact in the north tower. ... many

elevators did not plunge, but were destroyed due to the crash and subsequent fires, or
were stranded in the shafts. ...

X I’m not sure if this is true, but I’m pretty sure it’s true.
XC I’m pretty sure the elevators were not meant to be elevated above the elevators.
XCGC I’m surprised that the number of people died in the elevators is low.
XCGC +IA I’m pretty sure the number of people died in the elevators is higher than the number of

people died in the towers.
XC̃GC̃ +IA I’m pretty sure the 9/11 attacks were the most horrific of the world trade center attacks.
Dialogue
Context

In 1997 a killer whale held a great white shark upside down for 15 minutes, causing it to
suffocate, after which it ate only its liver

Control orca
Grounding ... The orca held the shark upside down to induce tonic immobility and kept the shark

still for fifteen minutes , causing it to suffocate ... The orca then proceeded to eat the
dead shark ’s liver ...

X I think the article is about a great white shark.
XC I’m not sure if this is the orca that killed the killer whale, but i think it’s the killer whale

that killed the killer whale.
XCGC I think the orca is the one who’s the bad guy.
XCGC +IA I’m pretty sure the orca is the one who killed the shark.
XC̃GC̃ +IA I’m pretty sure that’s a great white shark.
Dialogue
Context

Millions of Puerto Ricans just lost power again after a line repaired by Whitefish Energy
failed.

Control restored
Grounding ... just 18% of the territory now has power, and officials did not have a clear timeline on

when the power will be restored. ...
X I’m not sure if this is true, but I’m pretty sure it’s true.
XC I’m not surprised. I’m surprised that the government is still trying to get the rest of the

population restored.
XCGC I’m surprised they didn’t just repair the line. I mean, it’s not like they were going to be

able to get back to the island they were supposed to be.
XCGC +IA I’m surprised they didn’t just restore power.
XC̃GC̃ +IA I’m from San Juan and I’m pretty sure I’m not the only one that noticed this.
Dialogue
Context

76 % of all known serial killers in the 20th century were from the United States.

Control law enforcement
Grounding ... and may include more stringent policies for military personnel in law enforcement or

security ... Should the cases cross multiple jurisdictions, the law enforcement system in
the US is fragmented and thus not configured to detect multiple similar murders across a
large geographic area ...

X I’m pretty sure the US had a police force of around 100,000 people.
XC I’m pretty sure the USA had a large number of serial killers in the US. I’m sure the USA

had a large number of law enforcement officers in the US.
XCGC I’m not sure if this is true, but I’m pretty sure that the US has a lot of law enforcement

officers that are from the US.
XCGC +IA I’m not sure if this is true, but I’m pretty sure that the law enforcement in the US is not

very good at detecting serial killers.
XC̃GC̃ +IA I’m pretty sure that the USA has a large population of female serial killers.

Table 6: Sample outputs of the systems, with baseline outputs for comparison.



future directions include exploring various types of
user desired control and extending the controllable
grounded generation concept to broader generation
tasks like document writing assistance.
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