
mrs2vec: Word Embedding with Semantic Contexts

Rik Koncel-Kedziorski
University of Washington, USA

kedzior@uw.edu

Abstract

Mapping words to real-valued vectors for
use in NLU applications has attracted re-
newed interest from researchers in the
past few years due to advances in neu-
ral techniques. Previous work has incor-
porated forms of syntactic and semantic
knowledge into the word-embedding pro-
cess with positive results. None, how-
ever, has leveraged a syntactic resource as
precise as the English Resource Grammar
(ERG). Moreover, the ERG parse of a sen-
tence contains a semantic graph derived
from the syntax which expresses com-
positional semantic relations between the
entities and events denoted. This paper
outlines mrs2vec, a method for training
word embeddings from semantic depen-
dencies as given by the ERG. I show how
these embeddings compare to state-of-the-
art embeddings which incorporate syntac-
tic and non-compositional lexical seman-
tic knowledge.

1 Introduction

Many NLU applications could benefit from an ac-
curate understanding of word meaning, but pro-
viding such an understanding has proved challeng-
ing. Modern research into this provisioning pri-
marily takes two forms. One set of approaches
focus on recording human knowledge of word-
meaning in resources which computers can eas-
ily utilize (e.g. WordNet (Miller, 1995), Framenet
(Baker et al., 1998), Freebase (Bollacker et al.,
2008), etc). Another set of approaches make use
of the distributional hypothesis that words in sim-
ilar contexts share similar meanings (Lin, 1998;
Mikolov et al., 2013a). These methods observe
words in contexts throughout a large corpus and

utilize expensive algorithms to map them into a
high-dimensional space.

Continuous space word vectors produced by
neural networks have proved to be a powerful sta-
tistical method for providing information about a
word’s meaning. These methods make use of the
“unreasonable effectiveness” of neural networks
to map words to points in a relatively low dimen-
sional vector space (Karpathy, 2015). These map-
pings have been shown to translate intuitive rela-
tionships between words into spatial relationships
between points in the vector space (Mikolov et
al., 2013a). Recently, Levy and Goldberg (2014)
showed that using syntactic dependency contexts
(rather than the traditional adjacency constraints)
in the training of embeddings improved perfor-
mance on a word similarity judgment task. Addi-
tionally, incorporating non-compositional seman-
tic knowledge from lexical knowledge bases into
word embeddings has also been shown to improve
embeddings (Faruqui et al., 2015).

This paper details a method called mrs2vec
which incorporates semantic knowledge and syn-
tactic structure to produce neural word embed-
dings. A corpus of semantic graphs of sen-
tences from English Wikipedia are used as train-
ing data for the skip-gram word embedding al-
gorithm (Mikolov et al., 2013a). These graphs
are produced by the English Resource Grammar
(Flickinger, 2000; Flickinger, 2011). The embed-
dings produced by the mrs2vec method are com-
pared with embeddings trained from syntactic de-
pendency graphs. Additionally, I report the re-
sults of augmenting both dependency-based and
mrs2vec embeddings with information from lex-
ical semantic knowledge bases.

My results show that mrs2vec embeddings per-
form comparably on standard word similarity
tasks. However, standard techniques for aug-
menting word embeddings with lexical seman-



tic knowledge do not to have the same consis-
tent positive impact on the mrs2vec embeddings as
they do on dependency-based embeddings. I also
outline several other advantages of these embed-
dings. Notably, mrs2vec embeddings provide sep-
arate vectors for differing parts of speech of ortho-
graphically identical words. In limited cases, sep-
arate vectors are also provided for different word
senses. More importantly, mrs2vec embeddings
can be integrated into other systems which rely on
the ERG for syntactic and semantic parsing.

2 Background

The previous work from which this one draws
inspiration is divided into three subsections be-
low, covering first lexical knowledge bases, ERG-
specific background knowledge, and methods for
word vectorization.

2.1 Knowledge Bases

Knowledge bases (KB) abound in NLU applica-
tions. Projects like Freebase (Bollacker et al.,
2008) attempt to encode human knowledge about
a diverse set of concepts in a semi-structured graph
database. Objects (real world entities, topics, or
concepts) are related to each other through a di-
verse collection of edge labels. The information
from Freebase has been used to improve systems
for tasks such as joint coreference resolution and
named entity linking (Hajishirzi et al., 2013) and
distantly supervised relation extraction (Mintz et
al., 2009). However, the knowledge in these re-
sources mostly concerns specific important peo-
ple, places, or events (for example, celebrities).
Lexical knowledge about the meanings of com-
mon words is often excluded, minimizing their
utility for general purpose NLU.

However, there are KBs which provide such lex-
ical information. Chief among these is WordNet
(Miller, 1995), developed at Princeton University
and introduced in 1995. Prior to WordNet, ma-
chine readable dictionaries were the primary way
to incorporate some knowledge about words and
their meaning into an algorithm. WordNet is orga-
nized according to psycholinguistic principles of
word similarity (Miller et al., 1990). Each sur-
face form is associated with one or more senses.
Senses are organized into sets of synonyms, and
synonym sets are then related to each other by hy-
per/hyponym relations where these relations ob-
tain. WordNet has been used in numerous NLU

tasks and applications, but its being used to aug-
ment word embeddings through a process called
retrofitting described by Faruqui et al. (2015) (re-
viewed below) is especially relevant to the cur-
rent work. I compare the effect of retrofitting both
mrs2vec word embeddings and dependency based
embeddings with relations from WordNet.

The success and shortcomings of WordNet
prompted other similar projects. WordNet’s syn-
onym sets and other relations do not capture nec-
essary facts about verbs such as the predicate ar-
gument structures associated with specific verb
senses or the syntactic configurations into which
a verb may enter (for example, if and how its va-
lence can be changed). VerbNet (Schuler, 2005), a
collaboration directed by University of Colorado’s
Martha Palmer, is intended as a broad-coverage,
comprehensive collection of verbs and their ar-
gument structures that fills in some of the gaps
of WordNet. The purpose of VerbNet is to cap-
ture the more complicated surface realizations of
verb senses. In its current form, VerbNet orga-
nizes a lexicon of 3769 verb lemmas covering
5257 senses into 247 first-level classes. These
classes are an extension and refinement of those
outlined by Beth Levin’s investigation of English
verb classes (Levin, 1993). Syntactic descriptions
of possible surface realizations of verbal argument
structure, as well as semantic constraints on argu-
ment types, are also detailed.

FrameNet (Baker et al., 1998) is based on lin-
guist Charles Fillmore’s theory of meaning called
“Frame Semantics” (Fillmore, 1982). A frame is
an event, relation, or entity and its participants
(called frame elements). For example, if a sen-
tence describes someone cooking food, this in-
stantiates an Apply heat frame and the frame ele-
ments Cook, Food, Heating instrument, and Con-
tainer. The FrameNet corpus consists of over
170,000 sentences manually annotated from a
stock of over 1000 frames. Automatic tools such
as Frame-Semantic parsers have been developed
based on this data (Das et al., 2014), but their
coverage is limited. In this work, I also com-
pare the effect of retrofitting both mrs2vec em-
beddings and dependency-based embeddings with
FrameNet knowledge.

Another semantic relation that could be lever-
aged for lexical knowledge is the paraphrase rela-
tion. The Paraphrase Database (PPDB) (Ganitke-
vitch et al., 2013) includes a collection of over 220



million English paraphrase pairs, including over 8
million lexical pairs. These paraphrases were ex-
tracted automatically from parallel texts. In a large
multi-lingual corpus, if two English words map to
the same non-English word, the English words are
considered paraphrases of each other. The PPDB
also contains phrasal paraphrases obtained by the
same method, but they are not used in this work.
Here, I retrofit mrs2vec and dependency embed-
dings with PPDB knowledge for comparison.

2.2 English Resource Grammar

This work utilizes the English Resource Gram-
mar (Flickinger, 2000; Flickinger, 2011) to pro-
vide syntactic and semantic information for im-
proving word embeddings. The ERG is a hand-
built grammar for the English language that cov-
ers a variety of genres and domains. It has been
in continual development by specialists for over
20 years and at present (in its version 1212 re-
lease) it contains 222 phrase structure, 84 lexical
rules and roughly 38,000 lexical entries of 1000
lexical types (Flickinger et al., 2014). Due to its
complexity and active, attentive development, the
ERG is able to produce precise parses which cover
a large percentage of formal and informal English
phenomena.

The syntactic formalism of the ERG is Head-
driven Phrase Structure Grammar (HPSG) (Pol-
lard and Sag, 1994), a constraint-based, lexical
generative grammatical theory which allows for
both parsing and generation. In an HPSG gram-
mar specification, lexical entries are represented
as feature structures (rather than the POS node
labels commonly used in other grammatical for-
malisms). This increased expressiveness allows
for more accurately capturing the valid syntactic
configurations of a language. Parsing proceeds by
unification of feature structures according to the
grammar rules until a feature structure represent-
ing the sentence is (or is not) produced.

HPSG rules and lexical entries include a seman-
tic component, thereby allowing for the compo-
sition of a semantic graph of a parsed sentence
from its syntactic derivation. The ERG makes use
of Minimal Recursion Semantics (MRS), a com-
positional semantic formalism (Copestake et al.,
2005). The basic unit of MRS is the Elementary
Predication (EP), defined as a single relation and
its associated arguments. For example, the EP cor-
responding to the lexeme eat in Figure 1 can be

The raccoons seem to be eating berries. 

ARG2

ARG2

ARG1

ARG1

Figure 1: Comparison of Stanford syntactic
(above) and ERG semantic (below) dependencies

represented as a two-place relation between the
raccoons (or technically, a semantic variable rep-
resenting the entity denoted by the raccoons) and
the berries they eat.

MRS is an attempt to be both linguistically ac-
curate and computationally tractable. One way it
accomplishes this is by allowing for underspeci-
fication of quantifier scope, which has tradition-
ally prohibited computational tractability. Cor-
rect quantifier scoping can require extra-sentential
context, but ignoring quantifier scoping altogether
would introduce unacceptable ambiguity. MRS re-
solves this by defining scope of EPs only as ex-
actly as the sentence does, i.e. allowing for am-
biguity only where it exists. Although in this
work we ignore scopal information, future work
or downstream tasks could benefit from taking this
important feature of MRS into account.

2.3 Neural Word Embeddings

Neural word embeddings are an immediate
byproduct of neural language models. A neural
language model is a language model produced us-
ing a neural network to model the complex, long-
distance dependencies of natural language text.
Bengio et al. (2003), in their foundational work
on the subject, describe the procedure for building
a neural language model. Each word from the tar-
get vocabulary is associated with a random real-
valued vector. The probability function of word
sequences is expressed as a function of the vec-
tors associated with words in the sequence. The
network model then learns both good word vec-
tors (embeddings) and parameters of the probabil-
ity function by observing large tracts of running
text.

Often in neural language modeling, deep net-
work structure is employed. Deep networks are
those with several intermediate or “hidden” lay-
ers between the input and output. Deep networks



Figure 2: The Skip-gram Model architecture
(Mikolov et al., 2013b). Words are represented as
vectors (boxes) which interact with the network.

are trained by backpropagating errors to maximize
the log-likelihood of their training data. Due to
the complexity of backpropagating errors through
a deep network structure, training a deep neural
network language model is significantly computa-
tionally expensive. However, if the goal is only
to produce high quality embeddings (rather than
an entire neural language model), then the process
can be made significantly faster by simplifying the
model in the manner discussed below.

2.3.1 Skip-Gram Model

Recently, Mikolov et al. (2013a) showed that high-
quality word embeddings can be produced quickly
by reducing the complexity of the neural network.
To do so, they remove the non-linear hidden lay-
ers of the network and share the projection layer
between all words in the vocabulary.

They discuss two methods for training such em-
beddings. In the Continuous Bag-of-Words setup,
the training goal is to predict the middle word of
a 2n + 1-long span of words based on the oth-
ers. They also define the Skip-gram model, where
the training goal is to predict, from the middle
word, the surrounding words in the window. An
overview of the Skip-gram model can be seen in
Figure 2.

Typically, Skip-gram models are trained on
large corpus of text, which we can consider as a
sequence of words (w1, w2, ..., wT ).1 A window
size c is selected, and the training objective is to
then maximize the average log probability of the
data. This objective is shown in Equation 1.

1

T

T∑
t=1

∑
−c<j<c,j 6=0

log p(wt+j |wt) (1)

p(wt+j |wt) is typically defined using the fol-
lowing formulation of the softmax function:

p(wO|wI) =
exp(υ′wO

>υ′wI
)∑K

k=1 exp(υ
′
wk

>υwI )
(2)

Here, υw and υ′w are the input and output vector
representations of w, and K is the cardinality of
the vocabulary. p(wt+j |wt) can be approximated
by hierarchical softmax when the computational
cost of full softmax is too high (such as over large
vocabularies).

It is also possible to approximate the softmax
function with a technique called Noise Contrastive
Estimation (NCE) (Gutmann and Hyvärinen,
2012). Here, “noise” examples are added to
the training data and the training objective be-
comes distinguishing the “true” data-points from
the noise. Because simplifying assumptions can
be made with this new objective, and through the
use of Monte Carlo approximation, NCE can be
less expensive than learning probabilities using a
softmax function. Because the gradient of the
NCE training objective is 0 when the probability
distribution it assigns to words and their contexts
is the same as the empirical distribution, NCE is an
effective approximation of the full softmax (Dyer,
2014).

Mikolov et al. (2013b) outline a simplification
of NCE called Negative Sampling that preserves
the quality of the learned vector representation of
words at the expense of accurately approximately
modeling the log probability of the softmax. They
replace the log p(wt+j |wt) term in the Skip-gram
objective with the Negative Sampling objective:

log σ(υ′wO

>
υ′wI

)

+
k∑

i=1

Ewi∼Pn(w)[log σ(−υ′wi

>
υwI )] (3)

1It is traditional to use wt to indicate the target word at
time t, as if words are being processed in a time sequence.
In this notation, T is used to indicate the cardinality of the
corpus.



Here, σ is a sigmoid function, and Pn is a “noise”
distribution of randomly assigned word/context
pairs. Ideally, these pairs are unattested in the
training corpus. For each attested example, k
“noise” pairs are selected. Negative Sampling in
this way is faster than NCE for the purposes of
training word vector representations, but cannot be
applied to other tasks where a full language model
is required.

2.3.2 Extensions of the Skip-Gram model
Several researchers have tried to improve neural
word embeddings by incorporating various forms
of knowledge. Levy and Goldberg (2014) use
dependency structure to train skip-gram embed-
dings. An outline of their training model is shown
in Figure 3.

Using the fast arc-eager parser described in
Goldberg and Nivre (2012), the authors construct
training dependency triples from the text of En-
glish Wikipedia. Each triple (g, r, d) connects a
governing word g to a dependent d with an arc la-
beled r. Noting that there is no prohibition in the
skip-gram specification on words and contexts be-
ing drawn from different vocabularies, they define
separate target and context vocabularies to allow
for dependency labels to inform the embedding
process. The context vocabulary consists of de-
pendents concatenated with an arc label and gov-
ernors concatenated with an arc label and a spe-
cial inverse symbol to indicate that the governor-
dependent relationship is inverted in this exam-
ple. Thus, each (g, r, d) triple is converted into
the training pairs (d, gr) and (g, dz−1).

The modified objective, accounting for the dif-
fering target and contexts vocabularies, is as fol-
lows:

1

2|C|
(
∑
g∈V

∑
(g,r,d)∈C

log p(g|dr)

+
∑
d∈V

∑
(g,r,d)∈C

log p(d|gr−1) (4)

Here we let C represent the set of training triples,
and V the vocabulary we want to embed in a vec-
tor space. Training proceeds as outlined above,
using negative sampling to facilitate fast parame-
ter estimation.

Levy and Goldberg (2014) claim that their vec-
tors display “functional” similarity instead of the
“broad topical” similarity captured by linear con-
text models. They argue that words which appear

Figure 3: The Dependency-based Skip-gram
model architecture. The dependency structure
shown at the top in blue results in the training pro-
cesses shown beneath.

in a similar set of dependency relations to context
words have similar function in their sentences, for
example as subjects or as objects of prepositions.
Words in similar windows have no such guaran-
tee. For instance, both adverbs and objects can
immediately follow many verbs, and often adverbs
that follow verbs will be topically related to those
verb’s objects. But adverbs and objects do not
have the same function in a sentence, and so Levy
and Goldberg (2014) argue that the similarity be-
tween topically-related adverbs and objects is less
significant than the similarity shared by objects
that can be selected by the same verb. Their im-
proved results on a word similarity judgment task
bolster their argument.

Qualitative evidence for the value of functional
similarity is offered through model introspection.
A skip-gram model with a 5-word linear context
will select gainsville, fla and jacksonville as the
nearest neighbors to florida. While these words
(and abbreviations) are related, they are not of the
same semantic type (namely, states) as the target
word. The dependency-based context model in-
stead selects texas, louisana, and georgia. The



current work builds on the intuition that relational
structure between words can be leveraged, but
makes use of a semantic structure rather than a
syntactic one.

It’s worth noting that the use of dependency in-
formation in distributional semantic models has
a long history, dating back more than 20 years.
Lin (1998) uses dependency triples to improve
an information-theoretic similarity metric. Here,
counts of governor, relation, dependent triples
are extracted from a large corpus. The informa-
tion content of a triple and its count (written as
I(g, r, d) for governor g, relation r, and dependent
d) is defined as the mutual information between
the governor and dependent, or

I(g, r, d) = log
||(g, r, d)|| × ||(∗, r, ∗)||
||(g, r, ∗)|| × ||(∗, r, d)||

(5)

where ||(g, r, d)|| is the count of the triple (g, r, d)
in the corpus, and a wild-card ∗ indicated aggre-
gation of all triples matching the remaining speci-
fication (so that, e.g. ||(∗,nsubj,dog)|| is the count
of all occurrences in the corpus of dog related to
anything by the nsubj relation).

In addition to dependency information, other
forms of linguistic knowledge have been incor-
porated into the word embedding process. Yu
and Dredze (2014) seeks to incorporate semantic
knowledge into word vectors for improved perfor-
mance. They define an objective function which
maximizes the likelihood of a word given the
words to which it is related in a knowledge base.
They combine this objective with the Continuous
Bag-Of-Words neural embedding objective to ar-
rive at a joint context/semantic embedding model.
They evaluate their embeddings using the PPDB
and WordNet as lexical semantic resources and
show that their results improve over baselines on
several tasks.

A further effort to incorporate semantic knowl-
edge into word embeddings was outlined in
Faruqui et al. (2015). In that project, word
embeddings are refined using a technique called
retrofitting. Retrofitting is a method for mov-
ing the vectors for words that are associated in
a knowledge base closer together. Retrofitting is
more flexible than the method introduced in Yu
and Dredze (2014) because it is quicker and can
be done as a post-processing step. Any neural
embeddings, produced from any training data by
any method, can be retrofit with a semantic lex-

icon. Faruqui et al. (2015) show how incorpo-
rating WordNet, Framenet, and the PPDB into a
variety of vectors affects (and often improves) re-
sults on various syntactic and semantic similar-
ity tasks. I explore the possibility of retrofitting
semantic-based embeddings to the WordNet and
the PPDB and compare against dependency-based
embeddings retrofit with these knowledge-bases.

3 Motivation

Previous work has endeavored to augment the dis-
tributional word knowledge captured by the skip
gram word embedding strategy with various forms
of human knowledge about language. In the case
of the dependency-based embeddings of Levy and
Goldberg (2014), syntactic knowledge is added
via the dependency parser (trained on the arc la-
beling decisions made by human annotators.) In
the case of the retrofitting work of Faruqui et
al. (2015), manually constructed lexical knowl-
edge bases like WordNet and Framenet are em-
ployed. With regard to the PPDB, it is important to
note that this resource leverages parallel bilingual
texts. The ability to translate between languages
employs conscious, expert knowledge about the
structure and possibilities of both languages.

The current work uses the ERG as a source of
expert human knowledge about language to im-
prove word vectors. The ERG has several advan-
tages over the sources previously used. The de-
pendency parser whose output Levy and Goldberg
(2014) incorporate into their word vectors was
introduced in Goldberg and Nivre (2012). This
parser is fast while maintaining high accuracy,
but it, like most other off-the-shelf dependency
parsers available, is trained on sections 2-22 of the
Penn-WSJ Treebank (Marcus et al., 1993), which
is converted to dependencies by the deterministic
rules outlined in De Marneffe et al. (2006). The
variety of language of this training corpus is quite
limited; for example, it is known to contain very
few questions. Dependency parses of questions
(and presumably those of many other construc-
tions which do not obtain in newswire text) from
parsers trained on this data are notorious for their
poor quality.

The ERG, on the other hand, is constantly be-
ing developed to account for ever more grammati-
cal phenomena in a principled and justifiable way
by a number of researchers. This effort is facili-
tated by the Redwoods treebanking project, which



The raccoons continue to play.

ARG1

ARG2	(qeq)

The raccoons try to play.

ARG1
ARG1

ARG2

Figure 4: Comparison of analyses for raising (left) and control (right) verbs. Note the syntactic symmetry
in the dependency structure above. The semantic structures assigned to each sentence, however, differ
due to the nature of the matrix verbs.

emphasizes incremental improvement and reuse
of existing annotation decisions (Flickinger et al.,
In press). A key component of this annotation
process is presenting annotators with a collection
of machine produced parses for disambiguation.
Thus, I expect that the syntactic knowledge en-
coded in the ERG is better than that provided by
dependency parsers.

A goal of Levy and Goldberg (2014)’s work
was to capture functional word similarity rather
than topical similarity. Dependency structure was
shown to aid in this goal. I hypothesize that co-
occurrence in semantic structures can better cap-
ture functional similarity. The ERG is used to pro-
duce a semantic graph of each of a collection of
sentences.

This semantic graph is composed directly from
the syntactic analysis of the sentence, through the
application of rules of semantic composition.

Figure 1 shows a comparison of the (Stanford)
dependency graph of a sentence and an ERG se-
mantic graph of the same sentence. Note that the
syntactic structure for this sentence does not di-
rectly link raccoons to the embedded verb eat. As
such, Levy and Goldberg (2014) will not consider
this verb as a context for raccoons. The graph
produced by the ERG, however, does make this
important connections. I expect that embeddings
which account for such information will facilitate
accuracy in downstream semantic tasks.

Consider also the raising and control structures
shown in Figure 4. The Stanford dependency
structure for these two sentences are identical. Yet
on the left, the raising verb continue expresses a
property of the event described in its complement.
In this case, the raccoons, who were playing, con-

tinue to do so. Continuation is not a property of the
raccoons, but rather the playing event as a whole.
The ERG links the EP for continue with that for
play via the argument structure of continue (mod-
ulo quantifiers, as there are multiple possible scop-
ings and so a need for underspecification). It is
not linked to the EP for raccoons because this sen-
tence is not about the continuation of the raccoons
(i.e. their continued existence).

In the right hand example, the control verb try
is linked to both the EP for raccoons and play be-
cause it describes a relation between the raccoons
and playing. The sentence describes a “trying”
event, and it is the raccoons who try, and so it is
their EP that fills the ARG1 role of the try predi-
cate. Similarly, the “trying” event has as its goal
“playing”, and so the EP for play is linked as the
ARG2 of try.

The ERG encodes this difference in the seman-
tics produced for raising and control sentences.
This is a more accurate reflection of the semantic
nature of these verbs than can be obtained by look-
ing purely at the parse structure. It is hoped that
this semantic accuracy will translate into better
word vectors for downstream tasks. For instance,
if we wanted to find a word similar to raccoons,
the raising dependency structure might guide us
toward things that also serve as the subject of con-
tinue, such as rainstorms or trials. These are less
desirable than words which can serve as the ARG1
of play, such as goats or children.

Now suppose we are automatically generating
a story about goats, and, noting their similarity to
raccoons, we are basing our plot events on verbs
similar to those connected with raccoons in our
training data. From the dependency structures of



Figure 5: The direct model of mrs2vec.

these examples, we would be limited to events
similar to “continuing” and “trying”, which in-
clude boring activities like contriving and recom-
mencing. However, the semantic graphs connect
raccoons to play, leading us to the more interest-
ing similar events of “singing” and “umpiring”.
Using these more interesting events, we can gener-
ate a better story for, for example, a dynamic video
game plot or a grade-school child’s customized ed-
ucational materials. These are just a few examples
of the value of semantically accurate embeddings
on downstream tasks, but others can be imagined.

4 Methodology

In this work, I make use of the WikiWoods corpus
(version 1212) (Flickinger et al., 2010) as training
data for the word embeddings. WikiWoods con-
tains ERG syntactic parses and semantic graphs of
more than 50 million sentences taken from English
Wikipedia. I use the Elementary Dependency
Structure (EDS) format of the semantic graph, a
variable-free semantic dependency graph (Oepen
et al., 2004).

I make use of the generalized skip-gram model
presented in Levy and Goldberg (2014) with slight
modifications to accommodate the information
from the MRS. The mrs2vec models are con-
structed by optimizing the same objective function
as the dependency-based models, listed in Equa-
tion 4.

Wolf  cubs ate some of  my trash.

Elementary	Dependencies:
…
compound_rel	 		ARG1			cub
compound_rel	 		ARG2		wolf
eat		ARG1		cub
eat		ARG2		part_of
part_of ARG1		trash
…

Training	Triples	(word/context):
...
cub/wolf(compound)
wolf/cub(compound-1)
eat/cub(ARG1)
cub/eat(ARG1-1)
eat/trash(ARG2.part_of)
trash/eat(ARG2.part_of	 -1)
…

Figure 6: Example of collapsing abstract predi-
cates. Here, the compound rel and part of pred-
icates are collapsed into the context.

Two methods of transforming EDS into training
data are used. By the direct method, each EDS
triple is converted directly into the training pairs.
An EDS describing an EP g whose rth argument is
the EP d is transformed into training pairs (g, dr)
and (d, gr−1). Here, items in the context vocabu-
lary are concatenations of an EP with an argument
index. A graphical representation of this method
is shown in Figure 5.

By the collapsed method, abstract predicates,
corresponding to non-lexical semantic qualities
such as passivization or implicit quantifiers, are
“collapsed” into the argument label.2 Figure 7
shows the architecture of the collapsed model.
Similar to collapsed dependencies, collapsing ab-
stract predicates allows for closer association of
contentful lexemes. For instance, in a noun-noun
compound, the EPs corresponding to each noun
are related only though the argument structure of
a special compound predicate. Using the direct
method, no training triple would relate the nouns
to each other. Instead, I collapse the compound
predicate into the argument label. I treat the noun
EP that is the ARG1 of the compound as the gover-
nor and the ARG2 as the dependent (see Figure 6).
Another example is the part-of relationship, which
serves often as an argument of a verb and takes the
head of a noun phrase as its argument. I directly
connect the verb and noun with a context that col-
lapses the part-of relationship with whatever argu-
ment it is of the verb.

2Abstract predicates are contrasted with surface predi-
cates representing overt words in the sentence.



Figure 7: The collapsed model of mrs2vec.
Dashed lines represent information in the MRS
graph which has been “collapsed” into new edges.

5 Experiments

For quantitative evaluation, I use two common
word similarity datasets: WS 353, containing 353
word pairs with human relatedness judgments; and
SimLex999, designed with a stricter notion of sim-
ilarity than WS 353. The models are asked to pro-
vide a similarity score (cosine distance) for each
word pair.

The datasets used here are typical in word em-
bedding literature. However, they do not provide
any context for a word. Rather, two words are
listed and scored in isolation. Due to lexical ambi-
guity, it is sometimes the case that a word will map
to several EPs in the ERG lexicon. When this oc-
curs, I evaluate similarity for all possibilities and
choose the highest score.

I compare against embeddings trained using
syntactic information from dependency parses.
I use the pre-trained 300-dimensional embed-
dings made available by Levy and Goldberg
(2014).3 These embeddings are trained using En-

3These embeddings can be found at https:

glish Wikipedia, similarly to mrs2vec, but us-
ing syntactic dependency parses of the sentences
rather than the ERG semantic graphs. Both the
syntactic dependency based embeddings and the
mrs2vec embeddings use mid-2013 snapshots of
English Wikipedia as their underlying corpus. As
such, they should be roughly comparable in terms
of vocabulary and contexts. However, while the
WikiWoods corpus only contains sentences for
which an ERG parse is available (about 85% of the
corpus), the dependency-parsed Wikipedia will
have some analysis for all sentences.

The syntactic dependency based embeddings
are compared with three settings for transforming
EDS to training data described above. In Table 1,
the direct transformation is reported as direct and
the collapsing of abstract predicates as collapsed.
The svo setting is a variant of the direct transfor-
mation where only EDS triples containing a verbal
predication are retained for training.4

To evaluate the potential for subsequently
retrofitting mrs2vec embeddings, I compare the di-
rect embeddings retrofit with WordNet and PPDB
data to dependency based embeddings retrofit with
WordNet and PPDB. This is accomplished using
the code made available by Faruqui et al. (2015)
with slight modifications to enable the retrofitting
of predicate embeddings where needed.

I report two metrics in Table 1. First, in keeping
with the tradition of work on word embeddings,
I report Spearman’s coefficient, a measure of the
correlation between model and human judgments.
I also report the accuracy on a pairwise ranking
task (PWR) which I believe is more in line with
current uses of word embeddings. For target word
T and options A and B where the human-reported
similarity of T and A is greater than that of T and
B, the model is correct if it ranks A as more similar
than B and wrong otherwise. In this task, no A and
B are used if they both are equally similar to T by
the human standard.

While the Spearman coefficient is a standard
evaluation for word embeddings, it has the disad-
vantage of capturing unintended relationships in
the data. For example, attend and arrive, verbs,
are rated roughly twice as similar as groom and
bride or bride and princess in the SimLex dataset.

//levyomer.wordpress.com/2014/04/25/
dependency-based-word-embeddings/

4This setting was suggested by Guy Emerson (personal
communication) and is the subject of a forthcoming work on
using MRS for word embeddings.



WS 353 SimLex
ρ PWR ρ PWR

Dep 0.622 0.727 0.447 0.638
svo 0.41 0.68 0.279 0.61
direct 0.516 0.744 0.313 0.614
collapsed 0.508 0.729 0.299 0.622

Table 1: Comparison of syntactic dependency
(Dep) and several mrs2vec varieties on the WS 353
and SimLex-99 Datasets. ρ, is the Spearman coef-
ficient, and PWR is the pairwise ranking task ac-
curacy.

However, the human evaluators were never asked
to rank the similarity of attend and arrive relative
to the similarity of groom and bride. It’s hard to
imagine making so complex a judgment as “how
much more similar are a pair of verbs than a pair of
nouns”. Yet the Spearman coefficient will punish a
model that fails to make this judgment accurately.

Moreover, I cannot think of a task which
requires such a complex similarity judgment.
Rather, the use of word embeddings in tasks such
as unsupervised semantic role labeling as reported
in Luan et al. (2016) involves considering the sim-
ilarity of a target word and a set of candidates, not
relative similarities between pairs of words of dif-
ferent parts of speech. Thus, I introduce the PWR
evaluation as a proxy for candidate selection use
cases of word embeddings. The PWR captures the
value of a word embedding method for a variety
of tasks where direct comparison of candidates to
a single target is required.

As is evidenced in Table 1, the mrs2vec embed-
dings perform reasonably well at this task. The
direct training method outperforms all models in
the pairwise ranking task over the WS 353 data.
Syntactic dependency based vectors retrofit with
the PPDB outscore all other models elsewhere.

In order to determine if the retrofitting method
can be used to improve mrs2vec embeddings, I
retrofit the direct embeddings with each of the
PPDB and WordNet. A comparison of the results
is given in Table 3. Moderate gains can be seen
on the SimLex dataset, but no consistent pattern
of improvement emerges. The dependency based
embeddings, however, show consistent improve-
ment when retrofit with the PPDB. I believe the
reason mrs2vec embeddings don’t show such an
improvement is due to the fact that the vectors
correlate to predicates rather than surface forms.

WS 353 SimLex
ρ PWR ρ PWR

Dep + WN 0.542 0.71 0.497 0.666
Dep + FN 0.458 0.711 0.359 0.632
Dep + PPDB 0.631 0.741 0.506 0.672
direct + WN 0.39 0.702 0.366 0.625
direct + FN 0.40 0.724 0.254 0.616
direct + PPDB 0.445 0.702 0.357 0.629

Table 2: Results of retrofitting dependency based
and mrs2vec embeddings with WordNet (WN),
FrameNet (FN), and the Paraphrase Database
(PPDB).

Target Dep Target direct

florida

texas

Florida

California
louisiana Texas
georgia Minnesota
california Nevada

water

seawater

water (noun)

seawater
groundwater groundwater
rainwater rainwater
floodwater brine (noun)
feedwater

water (verb)

oil (verb)
brine grass (verb)
wastewater irrigate
sewage sugar (verb)

fish

fishes

fish (noun)

arthropod
shrimp seabird
shellfish shrimp (noun)
jellyfish lobster
salmon

fish (verb)

farm (verb)
finfish whale (verb)
lobster fish for
halibut hunt (verb)

try

tries

try (verb)

attempt (verb)
tried endeavor (verb)
trys set out
trying loath (adj)

Table 3: Target words and the most similar words
given by different embeddings.

The retrofitting process involves surface form re-
lations, often given without enough context to pro-
duce an accurate parse. Absent these parses, the
predicates that can be matched to PPDB entries
are often incorrect, resulting in diminished perfor-
mance. A good direction for future work would
be to investigate better ways for leveraging sur-
face form word knowledge to improve predicate
embeddings.

6 Qualitative Evaluation

Introspection into the nature of the embeddings
reveals the power of the semantic method used
in mrs2vec. Looking at Table 3, both the
dependency-based embeddings and mrs2vec em-



beddings return state names as the most similar
words to Florida. However, only mrs2vec con-
tains separate vectors for orthographically identi-
cal words with different parts of speech, as each
form of these words will instantiate a different
EP in the semantic graph. For example, words
like water and fish can be used as both nouns and
verbs. mrs2vec embeddings return separate points
in the vector space for each use, and so we can
query the model for words most similar to the verb
or noun form independently. Dependency-based
vectors are unable to do this, resulting in one sense
of the word being under-represented in the similar-
ity list. Additionally, information from multiple
inflections of a word are collapsed into a single
mrs2vec vector. For example, try, tries, and trying
all map to the same vector. By contrast, inflected
forms of try are the 4 nearest neighbors given by
dependency-based vectors. Improvements to de-
pendency based vectors such as lemmatization and
part of speech tagging could yield similar results
to mrs2vec embeddings.

7 Conclusion

This paper has described mrs2vec, a method for
producing word embeddings from automatically
derived semantic graphs of sentences. I have
demonstrated that these embeddings perform com-
parably to other state-of-the-art embeddings on
out-of-context word similarity tasks, and I have
provided additional insight into the value of these
embeddings through model introspection.

Extensions of this method include on training a
vocabulary of semantic subgraphs rather than sin-
gle predicates for calculating phrasal vectors, or
composing these vectors for tasks like language
modeling or sentence similarity. As the full power
of these embeddings is not evident by the sin-
gle word similarity task I have set up here, my
hope is that this method can be of better use in
downstream applications where the compositional
structure of language is important.
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